Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 20(21): 2767-2773, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31424158

RESUMO

Modelling, predicting, and understanding the factors influencing the viscosities of ionic liquids and related mixtures are sequentially checked in this work. The molecular maps of atom-level properties (MOLMAP codification system) is adapted for a straightforward inclusion of ionic liquids and mixtures containing ionic liquids. Random Forest models have been tested in this context and an optimal model was selected. The interpretability of the selected Random Forest model is highlighted with selected structural features that might contribute to identify low viscosities. The constructed model is able to recognize the influence of different structural variables, temperature, and pressure for a correct classification of the different systems. The codification and interpretation systems are highlighted in this work.

2.
Chemosphere ; 216: 576-586, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30390588

RESUMO

The use of fluorinated ionic liquids (FILs) as novel materials in biological and pharmaceutical applications is an emerging research field. The knowledge of their cytotoxicity and that of 1-octanol/water partition coefficients are essential to assess their environmental risks, to estimate their toxicity and activity, or the hydrophilic/lipophilic balance, as well as to explore their properties as solvents in extraction processes or for successful drug design. The study of the cytotoxicity in four different human cell lines and the experimental measurement of the partition coefficient between 1-octanol and water (Po/w), using the slow-stirring method, were carried out for several FILs. In both studies, the effect of the cation ([C2C1Im]+, [C2C1py]+, [C4C1pyr]+, [N1112(OH)]+, or [N4444]+), the cationic alkyl side-chain length ([CnC1Im]+, with n = 2, 6, 8 or 12), and the anionic fluorinated chain length/anionic fluorinated domain size ([C4F9SO3]¯, [C8F17SO3]¯, or [N(C4F9SO3)2]¯) were analysed. The results reveal that both toxicity and partition properties are mainly influenced by the size of the cationic hydrogenated alkyl side-chain and that of the anionic fluorinated domain. The intrinsic tuneability of the FILs allows for their selection according to the lipophilic or hydrophilic character of the target biological system under consideration. The toxicity studies corroborate the biocompatible nature of some FILs tested in this work. Along, for all the FILs under study Po/w < 1.00. Accordingly, a decadic logarithm of the bioconcentration factor in fish of 0.5 would be estimated, which is below the regulatory endpoint used by regulatory agencies.


Assuntos
Halogenação , Células Endoteliais da Veia Umbilical Humana/patologia , Líquidos Iônicos/efeitos adversos , Queratinócitos/patologia , Octanóis/química , Água/química , Células CACO-2 , Sobrevivência Celular , Células Cultivadas , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Queratinócitos/efeitos dos fármacos
3.
Phys Chem Chem Phys ; 18(36): 25741-50, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27603428

RESUMO

Within ionic liquids, fluorinated ionic liquids (FILs) present unique physico-chemical properties and potential applications in several fields. However, the melting point of these neoteric compounds is usually higher due to the presence of fluorine atoms. This drawback may be resolved by, for instance, mixing different FILs to create eutectic mixtures. In this work, binary mixtures of fluoro-containing and fluorinated ionic liquids were considered with the aim of decreasing their melting temperatures as well as understanding and characterizing these mixtures and their phase transitions. Five FILs were selected, allowing the investigation of four binary mixtures, each of them with a common ion. Their solid-liquid and solid-solid equilibria were studied by differential scanning calorimetry and the non-ideality of the mixtures was investigated. Overall, a variety of solid-liquid equilibria with systems exhibiting eutectic behavior, polymorphs with solid-solid phase transitions, and the formation of intermediate compounds and solid solutions were surprisingly found. In addition to these intriguing behaviours, novel FILs with lower melting temperatures were obtained by the formation of binary systems, thus enlarging the application range of FILs at lower temperatures.

4.
J Phys Chem B ; 120(9): 2397-406, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26886188

RESUMO

This study is centered on the thermophysical characterization of different families of alkylammonium nitrate ionic liquids and their binary mixtures, namely the determination at atmospheric pressure of densities, electric conductivities and viscosities in the 288.15 < T/K < 353.15 range. First, measurements focusing on ethylammonium, propylammonium and butylammonium nitrate systems, and their binary mixtures, were determined. These were followed by studies involving binary mixtures composed of ethylammonium nitrate (with three hydrogen bond donor groups) and different homologous ionic liquids with differing numbers of hydrogen bond donor groups: diethylammonium nitrate (two hydrogen bond donors), triethylammonium nitrate (one hydrogen bond donor) and tetraethylammonium nitrate (no hydrogen bond donors). Finally, the behavior of mixtures with different numbers of equivalent carbon atoms in the alkylammonium cations was analyzed. The results show a quasi-ideal behavior for all monoalkylammonium nitrate mixtures. In contrast, the other mixtures show deviations from ideality, namely when the difference in the number of carbon atoms present in the cations increases or the number of hydrogen bond donors present in the cation decreases. Overall, the results clearly show that, besides the length and distribution of alkyl chains present in a cation such as alkylammonium, there are other structural and interaction parameters that influence the thermophysical properties of both pure compounds and their mixtures.

5.
Phys Chem Chem Phys ; 18(4): 2756-66, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26725329

RESUMO

In this work, we explore the interactions between the ionic liquid 1-ethyl-3-methylimidazolim acetate and different inorganic salts belonging to two different cation families, those based on ammonium and others based on sodium. NMR and Raman spectroscopy are used to screen for changes in the molecular environment of the ions in the ionic liquid + inorganic salt mixtures as compared to pure ionic liquid. The ion self-diffusion coefficients are determined from NMR data, allowing the discussion of the ionicity values of the ionic liquid + inorganic salt mixtures calculated using different methods. Our data reveal that preferential interactions are established between the ionic liquid and ammonium-based salts, as opposed to sodium-based salts. Computational calculations show the formation of aggregates between the ionic liquid and the inorganic salt, which is consistent with the spectroscopic data, and indicate that the acetate anion of the ionic liquid establishes preferential interactions with the ammonium cation of the inorganic salts, leaving the imidazolium cation less engaged in the media.

6.
Org Lett ; 17(21): 5244-7, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26493742

RESUMO

An efficient and scalable method has been developed for the synthesis of N-alkylpyridinium salts from biomass derived 5-hydroxymethylfurfural and alkyl amines using a catalytic amount of formic acid. This protocol is also extended to various diamines providing the exclusive formation of mono-N-alkylpyridinium salts. In addition, the mechanism for the formation of pyridinium salts was studied by DFT and using H2(18)O isotope labeled experiments showing no incorporation of (18)O in the product.

7.
J Proteomics ; 98: 175-88, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24316358

RESUMO

Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATR-FTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (ß-glucosidases and endo-1,5-α-l-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of ß-glucosidase in cork secretome. BIOLOGICAL SIGNIFICANCE: Cork degradation by fungi remains largely overlook. Herein we aimed at understanding how A. nidulans colonise cork cell walls and how this relates to wood colonisation. To address this, the protein species consistently present in the secretome were analysed, as well as major alterations occurring in the substrate, including lignin degradation compounds being released. The obtained data demonstrate that this fungus has superficially attacked the cork cell walls apparently by using both enzymatic and Fenton-like reactions. Only a few polysaccharide degrading enzymes could be detected in the secretome which was dominated by protein species associated with autolysis. Lignin degradation was corroborated by the identification of some degradation products, but the suberin barrier in the cell wall remained virtually intact. Comparative proteomics revealed that cork and wood colonisation share a common set of enzymatic mechanisms.


Assuntos
Aspergillus nidulans/metabolismo , Parede Celular/microbiologia , Proteínas Fúngicas/metabolismo , Casca de Planta/microbiologia , Proteoma/metabolismo , Quercus/microbiologia , beta-Glucosidase/metabolismo , Casca de Planta/citologia , Quercus/citologia
8.
J Proteomics ; 94: 262-78, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24120530

RESUMO

This study constitutes the first attempt to understand at the proteomic level the fungal response to ionic liquid stress. Ascomycota are able to grow in media supplemented with high concentrations of an ionic liquid, which, in turn, lead to major alterations in the fungal metabolic footprint. Herein, we analysed the differential accumulation of mycelial proteins in Aspergillus nidulans and Neurospora crassa after their exposure to two of the most commonly used ionic liquids: 1-ethyl-3-methylimidazolium chloride or cholinium chloride. Data obtained showed that numerous stress-responsive proteins (e.g. anti-ROS defence proteins) as well as several critical biological processes and/or pathways were affected by either ionic liquid. Amongst other changes, these compounds altered developmental programmes in both fungi (e.g. promoting the development of Hülle cells or conidiation) and led to accumulation of osmolytes, some of which may play an important role in multiple stress responses. In particular, in N. crassa, both ionic liquids increased the levels of proteins which are likely involved in the biosynthesis of unusual metabolites. These data potentially open new perspectives on ionic liquid research, furthering their conscious design and their use to trigger production of targeted metabolites. BIOLOGICAL SIGNIFICANCE: The present study emphasises the importance of understanding ionic liquid's stress responses, crucial to further their safe large-scale usage. Knowledge of the alterations prompted at a cellular and biochemical level gives also fresh perspectives on how to employ these "novel" compounds to manipulate proteins or pathways of biotechnological value. The results presented here provide meaningful insights into the understanding of fungi stress and adaptation responses to anthropogenic chemicals used in industry.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Líquidos Iônicos/farmacologia , Neurospora crassa/metabolismo , Proteômica , Estresse Fisiológico/efeitos dos fármacos , Aspergillus nidulans/citologia , Imidazóis/farmacologia , Neurospora crassa/citologia
9.
Phys Chem Chem Phys ; 15(41): 18138-47, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24061089

RESUMO

The subject of ionicity has been extensively discussed in the last decade, due to the importance of understanding the thermodynamic and thermophysical behaviour of ionic liquids. In our previous work, we established that ionic liquids' ionicity could be improved by the dissolution of simple inorganic salts in their milieu. In this work, a comparison between the thermophysical properties of two binary systems of ionic liquid + inorganic salt is presented. The effect of the ammonium thiocyanate salt on the ionicity of two similar ionic liquids, 1-ethyl-3-methylimidazolium ethylsulfonate and ethylsulfate, is investigated in terms of the related thermophysical properties, such as density, viscosity and ionic conductivity in the temperature range 298.15-323.15 K. In addition, spectroscopic (NMR and Raman) and molecular dynamic studies were conducted in order to better understand the interactions that occur at a molecular level. The obtained results reveal that although the two anions of the ionic liquid exhibit similar chemical structures, the presence of one additional oxygen in the ethylsulfate anion has a major impact on the thermophysical properties of the studied systems.

10.
Chemphyschem ; 14(9): 1956-68, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23650138

RESUMO

In this work the applicability of four of the most commonly used viscosity mixing rules to [ionic liquid (IL)+molecular solvent (MS)] systems is assessed. More than one hundred (IL+MS) binary mixtures were selected from the literature to test the viscosity mixing rules proposed by 1) Hind (Hi), 2) Grunberg and Nissan (G-N), 3) Herric (He) and 4) Katti and Chaudhri (K-C). The analyses were performed by estimating the average (absolute or relative) deviations, AADs and ARDs, between the available experimental data and the predicted ideal mixture viscosity values obtained by means of each rule. The interaction terms corresponding to the adjustable parameters inherent to each rule were also calculated and their trends discussed.

11.
J Phys Chem B ; 117(15): 4109-20, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23521702

RESUMO

The dissolution of uracil-a pyrimidine nucleic acid base-in the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][CH3COO]) has been investigated by methods of (1)H and (13)C NMR spectroscopy, (1)H-(1)H NOESY NMR spectroscopy, and quantum chemical calculations. The uracil-[C2mim][CH3COO] interactions that define the dissolution mechanism comprise the hydrogen bonds between the oxygen atoms of the acetate anion and the hydrogen atoms of the N1-H and N3-H groups of uracil and also the hydrogen bonds between the most acidic aromatic hydrogen atom (H2) of the imidazolium cation and the oxygen atoms of the carbonyl groups of uracil. The bifunctional solvation nature of the ionic liquid can be inferred from the presence of interactions between both ions of the ionic liquid and the uracil molecule. The location of such interaction sites was revealed using NMR data ((1)H and (13)C chemical shifts both in the IL and in the uracil molecule), complemented by DFT calculations. NOESY experiments provided additional evidence concerning the cation-uracil interactions.


Assuntos
Ácido Acético/química , Líquidos Iônicos/química , Teoria Quântica , Uracila/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Solventes/química
12.
Molecules ; 18(4): 3703-11, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23529030

RESUMO

This work is a new development of an extensive research program that is investigating for the first time shifts in the temperature of maximum density (TMD) of aqueous solutions caused by ionic liquid solutes. In the present case we have compared the shifts caused by three ionic liquid solutes with a common cation-1-ethyl-3-methylimidazolium coupled with acetate, ethylsulfate and tetracyanoborate anions-in normal and deuterated water solutions. The observed differences are discussed in terms of the nature of the corresponding anion-water interactions.


Assuntos
Líquidos Iônicos/química , Soluções/química , Temperatura , Ânions/química , Cátions/química , Óxido de Deutério/química , Imidazóis/química , Isótopos/química
13.
Chem Commun (Camb) ; 48(30): 3656-8, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22392359

RESUMO

This work explores the possibility of increasing the ionicity of ionic liquids via the solubilization of inorganic salts in their midst. The resulting purely ionic media-distinct ionic liquid plus inorganic salt mixtures-are liquid in an extensive concentration range and can be aptly denominated High Ionicity Ionic Liquids (HIILs).

14.
Acta Biomater ; 8(3): 1366-79, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22085860

RESUMO

This work reports and discusses the influence of four phosphonium-based ionic liquids (PhILs), namely trihexyl(tetradecyl) phosphonium dicyanamide, [P(6,6,6,14)][dca]; trihexyl(tetradecyl) phosphonium bis(trifluoromethylsulfonyl)imide, [P(6,6,6,14)][Tf(2)N]; tetrabutyl phosphonium bromide, [P(4,4,4,4)][Br]; and tetrabutyl phosphonium chloride, [P(4,4,4,4)][Cl], on some of the chemical, physical and biological properties of a biomedical-grade suspension of poly(vinyl chloride) (PVC). The main goal of this work was to evaluate the capacity of these PhILs to modify some of the properties of neat PVC, in particular those that may allow their use as potential alternatives to traditional phthalate-based plasticizers in PVC biomedical applications. PVC films having different PhIL compositions (0, 5, 10 and 20 wt.%) were prepared (by solvent film casting) and characterised by Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, dynamical mechanical thermal analysis, scanning electron microscopy/energy-dispersive X-ray/electron probe microanalysis, X-ray diffraction, transmittance, permeability towards oxygen and carbon dioxide, thermal degradation, contact angle measurement, water and vapour uptake, leachability and biocompatibility (haemolytic potential, thrombogenicity and cytotoxicity). A conventional organic plasticizer (di-isononyl phthalate) was used for comparison purposes. The results obtained showed that it was possible to change the neat PVC hydrophobicity, and consequently its water uptake capacity and plasticizer leachability, just by changing the PhIL employed and its composition. It was also possible to significantly change the thermal and mechanical properties of PVC films by choosing appropriate PhIL cation/anion combinations. However, a specific PhIL may not always be capable of simultaneously keeping and/or improving both physical properties. In addition, ionic halide salts were found to promote PVC dehydrochlorination. Finally, none of the prepared materials presented toxicity against Caco-2 cells, though pure [P(6,6,6,14)][dca] decreased HepG2 cells viability. Moreover, PVC films with [P(6,6,6,14)][dca] and [P(4,4,4,4)][Cl] were found to be haemolytic and thus these PhILs must be avoided as PVC modifiers if biomedical applications are envisaged. In conclusion, from all the PhILs tested, [P(6,6,6,14)][Tf(2)N] showed the most promising results regarding blood compatibility, leaching and permeability to gases of PVC films. The results presented are a strong indicator that adequate PhILs may be successfully employed as PVC multi-functional plasticizers for a wide range of potential applications, including those in the biomedical field.


Assuntos
Teste de Materiais , Membranas Artificiais , Compostos Organofosforados/química , Cloreto de Polivinila/química , Células CACO-2 , Sobrevivência Celular , Células Hep G2 , Humanos
15.
J Phys Chem B ; 115(36): 10739-49, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21806017

RESUMO

NMR studies of uracil, thymine, and adenine dissolved in 1-ethyl-3-methyl-imidazolium acetate ([C(2)mim][CH(3)COO]) and 1-butyl-3-methyl-imidazolium acetate ([C(4)mim][CH(3)COO]) show that hydrogen bonds (HB) dictate the dissolution mechanism and that both cations and anions participate in the solvation process. For that, the 1,3-dialkylimidazolium acetate ionic liquids (ILs) were considered to be bifunctional solvation ionic liquids. In the solvation of uracil and thymine, the [CH(3)COO](-) anion favors the formation of hydrogen bonds with the hydrogen atoms of the N1-H and N3-H groups of the nucleobases, while the aromatic protons in the bulky cations ([C(2)mim](+) and [C(4)mim](+)), especially the most acidic H2, interact with the oxygen atoms of the carbonyl groups. In the adenine solvation, while the [CH(3)COO](-) anion favors the formation of hydrogen bonds with the hydrogen atoms of the amino and N9-H groups of adenine, the aromatic protons in the bulky cations ([C(2)mim](+) and [C(4)mim](+)), especially the most acidic H2, prefer to interact with the unprotonated nitrogen atoms (N1, N3, and N7) of adenine. It is clearly demonstrated that hydrogen bonding is the major driving force in the dissolution of nucleobases in 1,3-dialkylimidazolium acetate ILs. Our results show that the ionic liquid must be a good hydrogen bond acceptor and a moderate hydrogen bond donor to dissolve nucleic acid bases. To strengthen the evidence of the proposed mechanism, NMR studies in the absence of deuterated cosolvents have been used, because the use of deuterated solvents could seriously hinder the dissolving capability of the IL for nucleobases.


Assuntos
Adenina/química , Líquidos Iônicos/química , Timina/química , Uracila/química , Ligação de Hidrogênio , Imidazóis/química , Espectroscopia de Ressonância Magnética , Solubilidade
16.
J Phys Chem B ; 115(37): 10919-26, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21815684

RESUMO

For the first time, two distinct trends are clearly evidenced for the enthalpies and entropies of vaporization along the [Cnmim][Ntf2] ILs series. The trend shifts observed for Δ(l)(g)H(m)(o) and Δ(l)(g)S(m)(o), which occur at [C6mim][Ntf2], are related to structural modifications. The thermodynamic results reported in the present article constitute the first quantitative experimental evidence of the structural percolation phenomenon and make a significant contribution to better understanding of the relationship among cohesive energies, volatilities, and liquid structures of ionic liquids. A new Knudsen effusion apparatus, combined with a quartz crystal microbalance, was used for the high-accuracy volatility study of the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide series ([Cnmim][Ntf2], where n = 2, 3, 4, 5, 6, 7, 8, 10, 12). Vapor pressures in the (450­500) K temperature range were measured, and the molar standard enthalpies, entropies, and Gibbs energies of vaporization were derived. The thermodynamic parameters of vaporization were reported, along with molecular dynamic simulations of the liquid phase structure, allowing the establishment of a link between the thermodynamic properties and the percolation phenomenon in ILs.


Assuntos
Líquidos Iônicos/química , Sulfonamidas/química , Pressão de Vapor , Técnicas de Microbalança de Cristal de Quartzo , Temperatura , Termodinâmica , Volatilização
17.
Chemphyschem ; 11(17): 3673-7, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21058381

RESUMO

The vaporization of a dicationic ionic liquid at moderate temperatures and under reduced pressures--recently studied by line-of-sight mass spectrometry--was further analyzed using an ion-cyclotron resonance mass spectroscopy technique that allows the monitoring of the different species present in the gas phase through the implementation of controlled ion-molecule reactions. The results support the view that the vapour phase of an aprotic dicationic ionic liquid is composed of neutral ion triplets (one dication attached to two anions). Molecular dynamics simulations were also performed in order to explain the magnitude of the vaporization enthalpies of dicationic ionic liquids vis-à-vis their monocationic counterparts.

18.
J Phys Chem B ; 114(39): 12589-96, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20839815

RESUMO

The solid-liquid phase behavior of benzene plus hexafluorobenzene binary mixtures is characterized by a stable congruent-melting binary solid, (C(6)H(6)·C(6)F(6)). In this work, differential scanning calorimetry (DSC) was used to build, for the first time, the temperature-composition phase diagrams of ten other binary mixtures involving benzene and its fluorinated derivatives. Distinct types of solid-liquid equilibria were observed, namely those exhibiting the usual eutectic behavior associated with ideal or quasi-ideal solubility conditions, or, in other cases, systems with equimolar congruent-melting solids. Data have been interpreted and rationalized using a unifying framework that takes into account the molecular dipole and quadrupole moments of the two components of each binary system and the structural motifs associated with each type of crystal.

19.
J Phys Chem B ; 114(27): 8978-85, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20568806

RESUMO

The fluid phase equilibria (liquid-liquid demixing behavior (LLE)) of mixtures of ionic liquids of the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide family, [C(n)mim][NTf(2)], with 2-methylpropanol or n-octanol were investigated. Binary mixtures of [C(4)mim][NTf(2)] + alcohol and [C(6)mim][NTf(2)] + alcohol were compared to pseudobinary mixtures of (0.5[C(2)mim] + 0.5[C(6)mim])[NTf(2)] + alcohol and (0.5[C(2)mim] + 0.5[C(10)mim])[NTf(2)] + alcohol, respectively. Additionally, the presence of water in the studied alcohols or as a third component in the system was analyzed in order to check any possible deviation from the LLE observed for the anhydrous systems. Systems containing small fractions of ionic liquid show similar LLE between the corresponding binary and pseudobinary systems; however, large differences are observed in the presence of water when the IL mass fraction is increased.

20.
J Phys Chem B ; 114(21): 7329-37, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20446701

RESUMO

The temperature-composition phase diagrams of 40 binary mixtures composed of a haloalkane dissolved in either 1-ethyl-3-methylimidazolium ethylsulfate or 1-ethyl-3-methylimidazolium ethylsulfonate were measured from ambient temperature to the boiling point temperature of the solute. The coexistence curves corresponding to liquid-liquid equilibria (LLE) boundaries were visually determined and the experimental results have been correlated using either the nonrandom two-liquid (NRTL) model or a set of empirical equations capable of describing the corresponding upper critical solution temperatures (UCSTs) loci. The different types of LLE behavior were discussed in terms of the type of ionic liquid solvent, the alkyl-chain length of the solute, and the type and pattern of halogen substitution present in the haloalkane. Auxiliary simulation data (obtained by ab initio or by molecular dynamics methods) were used to corroborate some of the experimental findings. Also, they correlate in a semiquantitative way the observed LLE behavior with the dipole moments of the different solutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...